大的网络赌博网站-网络赌博输过钱_百家乐手机壳_全讯网0008(中国)·官方网站

您當前所在位置: 首頁 > 講座報告 > 正文
講座報告

Adversarial Machine Learning

來源:機電工程學院          點擊:
報告人 Prof.Fabio Roli 時間 6月19日16:00
地點 北校區主樓Ⅲ區237會議室 報告時間 2019-06-19 16:00:00

講座名稱: Adversarial Machine Learning

講座時間: 2019-06-19 16:00:00

講座地點: 西電北校區主樓III-237報告廳

講座人: Fabio Roli


講座人介紹:

Fabio Roli is a Full Professor of Computer Engineering at the University of Cagliari, Italy, and Director of the Pattern Recognition and Applications laboratory (http://pralab.diee.unica.it/). He is partner and R&D manager of the company Pluribus One that he co-founded (https://www.pluribus-one.it). He has been doing research on the design of pattern recognition and machine learning systems for thirty years. His current h-index is 60 according to Google Scholar (June 2019). He has been appointed Fellow of the IEEE and Fellow of the International Association for Pattern Recognition. He was a member of NATO advisory panel for Information and Communications Security, NATO Science for Peace and Security (2008 – 2011).


講座內容:

Machine-learning algorithms are widely used for cybersecurity applications, including spam, malware detection, biometric recognition. In these applications, the learning algorithm has to face intelligent and adaptive attackers who can carefully manipulate data to purposely subvert the learning process. As machine learning algorithms have not been originally designed under such premises, they have been shown to be vulnerable to well-crafted, sophisticated attacks, including test-time evasion and training-time poisoning attacks (also known as adversarial examples). This talk aims to introduce the fundamentals of adversarial machine learning by a well-structured overview of techniques to assess the vulnerability of machine-learning algorithms to adversarial attacks (both at training and test time), and some of the most effective countermeasures proposed to date. We report application examples including object recognition in images, biometric identity recognition, spam and malware detection.


主辦單位:機電工程學院

123

南校區地址:陜西省西安市西灃路興隆段266號

郵編:710126

北校區地址:陜西省西安市太白南路2號

郵編:710071

訪問量:

版權所有:西安電子科技大學    建設與運維:信息網絡技術中心     陜ICP備05016463號    陜公網安備61019002002681號

七胜百家乐官网娱乐城总统网上娱乐城大都会娱乐城赌场 | 正规百家乐官网游戏下载| 百家乐官网打格式| 大发888免费软件下载| 百家乐官网那里信誉好| 柳林县| 威尼斯人娱乐城购物| 山西百家乐官网用品| 德州扑克玩法| 网上百家乐博彩正网| 百家乐官网棋牌交| 猪猪棋牌游戏| 澳门百家乐怎赌才能赚钱| 百家乐官网网上真钱麻将| 大发888开户大发娱乐权威吗| 金沙百家乐现金网| 百家乐官网是骗人的么| 海口太阳城大酒店| 罗盘24山珠宝火坑| 百家乐官网视频游戏界面| 大发888娱乐客户端真钱| 百家乐客户端LV| 金城百家乐官网买卖路| 雷州市| 德州扑克技巧视频| 百家乐平注常赢规则| bet365娱乐官网| 闲和庄百家乐官网娱乐城| tt娱乐城官网| 玩百家乐上高尔夫娱乐场| 百家乐真人大头贴| 怎么玩百家乐官网呀| 皇冠网站| 爱博| 大发888娱乐城3403| 如何玩百家乐的玩法技巧和规则 | 五常市| 巴登娱乐城开户| 威尼斯人娱乐城网址| 上市百家乐.评论| 百家乐怎么下注能赢|